M.Yu. Zubkov
Experimental simulation of the process of hydrothermal fluids interaction with the Jurassic deposits of the West Siberian Basin (Н2О–СО2 system)
DOI 10.31087/0016‑7894‑2020‑5-95-112

The authors discuss the results of hydrothermal simulation of epigenetic mineral associations and secondary reservoirs formation in different types of the Jurassic sedimentary rocks in Western Siberia in Н2О–СО2 system. The experiments were conducted at temperatures between 235 and 400 °C, pressure of 70 MPa, and mole fraction СО2 varying from 0 to 0.5. The duration of the experiments ranged from 5 to 19 days. In most experiments, pyrite charge was added as a buffer. It is found that in the experiments in Н2О–СО2 system the intensive bitumen and volatile components formation from organic matter present in the initial samples was observed. Process of bitumen and volatile components generation was accompanied by rock fluid fracturing and secondary porosity formation. Under these conditions, carbonates, acid plagioclase and, less often, kaolinite were found unstable. Formation of hydrothermal ferrigenous chlorite was observed instead. Both dissolution of the unstable mineral phases by hydrothermal fluid and formation of naphtides from plant detritus resulted in formation of additional secondary porosity. In addition, silicification of sample surface occurs. As СО2 concentration increases, an increase of kaolinite and siderite stability is observed. With a rise in temperature of hydrothermal fluids, СО2 starts to actively exhibit the oxidizing properties. As a consequence, formation of scheelite, bunsenite, cuprite, and tenorite occurs in the presence of elements making a part of autoclave, and also carbon oxide (СО). Presence of pyrite charge boosts the formation of hydrothermal ferrigenous chlorite. At the same time, formation of pyrrhotine, millerite, and chalcosine is reported. It is shown that in addition to methane, a gas phase remaining in autoclaves after hydrothermal experiments are finished contains significantly more C2+ hydrocarbons. By the example of the Jurassic deposits, the authors substantiate the participation of tectonic and hydrothermal processes in formation of hydrocarbon pools within the West Siberian Mesozoic series.

Key words:Jurassic deposits; hydrothermal fluids; H2O–СO2 system; dead oil; fluid fracturing; secondary reservoir.

For citation: Zubkov M.Yu. Experimental modeling of the process of interaction of hydrothermal fluids with Jurician deposits of the Western Siberian Basin (H2O–CO2 system). Geologiya nefti i gaza. 2020;(5):95–112. DOI: 10.31087/0016-7894-2020-5-95-112. In Russ.

References

1. Beskrovnyi N.S., Ermakova V.N., Taliev S.D. Bitumoidy neftesoderzhashchikh gravelitov i glin v uzonskoi gidrotermal'noi sisteme [Bitumoids of oil-bearing gravelstone and clay in the Uzonsky hydrothermal system]. In: Gidrotermal'nye mineraloobrazuyushchie rastvory oblastei aktivnogo vulkanizma. Novosibirsk: Nauka SOAN SSSR; 1974. pp. 135–143. In Russ.
2. Zubkov M.Yu., Bakuev O.V., Dvorak S.V., Pastukh P.I. Gidrotermal'nye mineraloobrazuyushchie rastvory oblastei aktivnogo vulkanizma [Vertical and lateral migration of interstitial fluids in the Jurassic series of the Krasnoleninsky arch]. In: Fiziko-litologicheskie osobennosti i kollektorskie svoistva produktivnykh gorizontov Zapadnoi Sibiri: sb. nauch. tr. ZapSibNIGNI. Tyumen, 1988. pp. 68–77. In Russ.

3. Zubkov M.Yu. Gidrotermal'nye silitsity — perspektivnyi neftegazopoiskovyi ob"ekt doyurskogo fundamenta Zapadno-Sibirskoi plity [Hydrothermal silicite: promising exploration target for oil and gas in pre-Jurassic Basement of West-Siberian Plate]. In: Geologiya i neftegazonosnost' nizhnikh gorizontov chekhla Zapadno-Sibirskoi plity : sb. nauch. tr. SNIIGGiMS. Novosibirsk, 1990. pp. 87–101. In Russ.
4. Zubkov M.Yu., Dvorak S.V., Romanov E.A., Chukhlantseva V.Ya. Gidrotermal'nye protsessy v sherkalinskoi pachke Talinskogo mestorozhdeniya (Zapadnaya Sibir') [Hydrothermal processes in the Sherkalinsky member (Talinsky field, Western Siberia)]. Litologiya i poleznye iskopaemye. 1991(3):122–132. In Russ.
5. Zubkov M.Yu. Tectonic-hydrothermal processes in the West Siberian Jurassic deposits. Geologiya nefti i gaza. 2017;(1):64–82. In Russ.
6. Zubkov M.Yu. Bituminization of the Bazhenov Formation and its relation to hydrothermal processes (Western Siberia) [Svyaz' bituminizatsii bazhenovskoi svity s gidrotermal'nymi protsessami (Zapadnaya Sibir')]. Gornye vedomosti. 2018;160(6):6–24. In Russ.
7. Zubkov M.Yu. Application of experimental tectonic methods in petroleum geology on the examples of deposits in Western Siberia. Geotectonics. 2019;53(3):383–398. DOI: 10.1134/S0016852119030105.
8. Markhinin E.K. Vulkany i zhizn' [Volcanoes and life]. Moscow: Mysl'; 1980. 196 p. In Russ.
9. Karpov G.A. Sovremennye gidrotermy i rtutno-surmyano-mysh'yakovoe orudenenie [Present-day thermal springs and mercury-antimonyarsenic metallization]. Moscow: Nauka; 1988. 183 p. In Russ.
10. Kireeva T.A., Budanova D.I. The role of vertical migration of high-temperature fluids in the genesis of formation waters in oil-gas fields in the North of the Western Siberian basin. Moscow University Geology Bulletin. 2013;(3):38–46. DOI: 10.3103/S0145875213030022. In Russ.
11. Zubkov M.Yu., Shvedenkov G.Yu. Eksperimental'noe modelirovanie protsessa formirovaniya vtorichnykh kollektorov pod deistviem gidrotermal'nykh flyuidov razlichnogo sostava [Experimental simulation of secondary reservoir formation under the influence of hydrothermal fluids of different composition]. In: Puti realizatsii neftegazovogo potentsiala KhMAO: sb. mat-lov V nauchno-prakticheskoi konferentsii. 2 vol. Vol. 1. Khanty-Mansiisk; 2002. pp. 323–332. In Russ.
12. Zubkov M.Yu., Shvedenkov G.Yu., Savinov A.V. The role of hydrothermal solutions in the alteration of organic matter and formation of reservoir rocks. Abstracts. In: Second International Simposium “Thermodynamics of natural processes” and Russian Symposium “Thermodynamics in geology”, 13–20 September 1992. (Novosibirsk, Russia). p. 148.
13. Borisov M.V. Geokhimicheskie i termodinamicheskie modeli zhil'nogo gidrotermal'nogo rudoobrazovaniya [Geochemical and thermodynamic models of veined hydrothermal mineralization]. Moscow: Nauchnyi mir; 2000. 360 p. In Russ.
14. Naboko S.I. Formirovanie sovremennykh gidroterm i metamorfizm rastvorov i porod [Formation of present-day thermal springs and metamorphism of solutions and rocks]. In: Voprosy vulkanizma. Moscow: Izd-vo AN SSSR; 1962. pp. 52–62. In Russ.
15. Sokolov V.A. Geokhimiya prirodnykh gazov [Geochemistry of natural gases]. Moscow: Nedra; 1971. p. 336. In Russ.
16. Shchepetkin Yu.V., Ryl'kov A.V. Rekonstruktsiya energeticheskikh preobrazovanii prirodnoi geokhimicheskoi sistemy poroda-OV-voda-neft' (gaz) na osnove detal'nykh issledovanii skoplenii uglevodorodov [Reconstruction of energy conversion within natural geochemical system “rock-OMwater-
oil (gas)” based on detailed studies of hydrocarbon accumulations]. In: Energiya i mekhanizm pervichnoi migratsii uglevodorodov. Moscow: Nauka; 1988. pp. 66–72. In Russ.
17. Spravochnik fizicheskikh konstant gornykh porod [Physical constants of rocks: reference book]. In: S. Klark, Jr., ed. Moscow: Mir; 1969. 544 p. In Russ.

M.Yu. Zubkov   Scopus  iD 
Candidate of Geological and Mineralogical Sciences,
Director General,
Senior Researcher
ZapSibGTs, Tyumen’, Russia
e-mail: ZubkovMYu@mail.ru