M.A. Lur’e
 
Sources of hydrocarbons, heterocomponents, and trace elements of abiogenic oil: properties and composition of deep fluids
 
DOI 10.31087/0016-7894-2020-3-43-49

The authors discuss properties of deep fluids and features of their transformation during the course of vertical migration and oil formation. Supercritical components of deep fluids make it possible to considerably weaken the mechanical strength of the surrounding rocks and to penetrate into their structure easily. This provides favourable conditions for fluid flow migration. Components of the deep fluids are: hydrocarbons; sulphur, nitrogen, oxygen compounds, and metal-containing structures. Supercritical components of deep fluids make them highly active to each other. Sulphur and metals have a catalytic capacity to initiate processes of hydrocarbon polymerization and formation of high-molecular organosulphur compound, as well as nitrogen-, oxygen- and metal-containing complexes (oil porphyrins). Simultaneous course of these reactions determines composition of the oil formed. Generation of petroleum hydrocarbons and organosulphur compounds is a process of "successive" multi-stage-type synthesis. These processes run without adding any extra reagents or catalysts to the reaction system.
There are numerous examples of successive processes occurring in nature. Formation of oil components is a particular case of these natural phenomena. Petroleum complexes (porphyrins) containing nitrogen, oxygen, and metals are formed simultaneously with generation of hydrocarbons and organosulphur compounds.

 

Key words: properties and composition of deep fluids; sources and processes of formation of oil heterocomponents and microelements.

For citation: Lur’e M.A. Sources of hydrocarbons, heterocomponents, and trace elements of abiogenic oil: properties and composition of deep fluids. Geologiya nefti i gaza. 2020;(3):43–49. DOI: 10.31087/0016-7894-2020-3-43-49. In Russ.

 

References

1. Yakimchuk N.A., Korchagin I.N. Ukrainskii shchit: Novye dannye o glubinnom stroenii i perspektivakh obnaruzheniya zalezhei nefti, gazokondensata, gaza i vodoroda [Ukrainian Shield: New data on deep structure and prospects for discovery of oil, gas condensate, gas, and hydrogen accumulations]. Geoinformatika. 2019;(2):5–18. In Ukr.
2. Ballhaus C. Is the upper mantle metal-saturated? Earth and Planetary Science Letters. 1995;132(14):75–86. DOI: 10.1016/0012-821X(95)00047-G.
3. Letnikov F.A. Sverkhglubinnye flyuidnye sistemy Zemli i problemy rudogeneza [Ultradeep fluid systems of the Earth and ore genesis problems]. Geologiya rudnykh mestorozhdenii. 2001;43(4):291–307. In Russ.
4. Yarmolyuk V.V., Kovalenko V.I., Naumov V.B. Potoki letuchikh komponentov v verkhnikh obolochkakh Zemli kak otrazhenie glubinnykh geodinamicheskikh protsessov [Flows of volatile components in the upper Earth’s shells: reflection of deep geodynamic processes]. In: Glubinnyi magmatizm, ego istochniki i ikh svyaz' s plyumovymi protsessami. Trudy IV Mezhdunarodnogo seminara. – Ulan-Ude. Irkutsk: Izd-vo Instituta geografii SO RAN; 2004. pp. 5–34. In Russ.
5. Eigenson A.S. Quantitative study of the formation of manmade and natural hydrocarbon systems using the methods of mathematical modeling. Chemistry and Technology of Fuels and Oils. 1990;26(12):19–25. DOI: 10.1007/BF00727755.
6. Lur’e M.A., Shmidt F.K. Oil. Discussion of origin. Sulfur- and metal content as genetic characteristics. Saarbrucken, Germany: Lambert Academic Publishing; 2012. 258 p.
7. Lurje M.A. Concerning geochemical differences of oil and gas systems. Geologiya nefti i gaza. 2015;(3):69–75. In Russ.
8. Chukin G.D., Alatortsev E.I., Leont'eva S.A. Origin of oil: a new look. Neftepererabotka i neftekhimiya. Nauchno-tekhnicheskiedostizheniya i peredovoi opyt. 2016;(7):17–22. In Russ.
9. Seiful'-Mulyukov R.B. Oil and gas formation. Theory and practical aspects. Geologiya nefti i gaza. 2017;(6):89–96. In Russ.
10. Letnikov F.A. Avtonomnye flyuidnye sistemy kontinental'noi zemnoi kory [Independent fluid systems of continental Earth’s crust]. Doklady akademii nauk. 2009;427(6):810–813. In Russ.
11. Lifshits S.Kh. Mekhanizm obrazovaniya nefti v sverkhkriticheskom potoke glubinnykh flyuidov [Mechanism of oil generation in supercritical flow of deep fluids]. Vestnik Rossiiskoi akademii nauk. 2009;79(3):261–265. In Russ.
12. Tisso B., Vel'te D. Obrazovanie i rasprostranenie nefti i gaza [Oil and gas generation and propagation]. Moscow: Mir; 1981. 504 p. In Russ.
13. Chudov S.V. Kimberlite Pipes and Fluid Volcanism. Priroda. 2019;(3):66–69. In Russ.
14. Nesterov I.I. Problemy geologii nefti i gaza vtoroi poloviny XX veka [Problems of oil and gas geology in the latter half of 20-th century]. Novosibirsk : Izd-vo SO RAN; 2007. 605 p. In Russ.
15. Eigenson A.S., Sheikh-Ali D.M. Relationships in component-fractional and chemical composition of crude oils. Chemistry and Technology of Fuels and Oils. 1988;24(10):444–453. DOI: 10.1007/BF00727688.

16. Lur’e M.A., Shmidt F.K. Interaction of endogenic methane and sulfur: a possible initial stage of condensation conversion and abiogenic genesis of oil. Journal of Sulfur Chemistry. 2007;28(6):631–644. DOI: 10.1080/17415990701670288.
17. Tittse L., Brashe G., Gerike K. Domino-reaktsii v organicheskom sinteze [Dominoes-reaction in organic synthesis]. Moscow: BINOM, laboratoriya znanii; 2010. 671 p. In Russ.
18. Kadik A.A., Kryukova E.B., Tsekhonya T.I., Kononkova N.N., Koltashev V.V., Plotnichenko V.G. Solubility of nitrogen, carbon, and hydrogen in FeO–Na2O–Al2O3–SiO2 melt and liquid iron alloy: Influence of oxygen fugacity. Geochemistry International. 2015;53(10):849–868. DOI: 10.1134/S001670291510002X.
19. Li Y., Keppler H. Nitrogen speciation in mantle and crustal fluids. In: Geochimica Cosmochimica Acta. 2014;129:13–32. DOI: 10.1016/j.gca.2013.12.031.

20. Zubkov V.S. Composition and speciation of fluid in the system C–H–N–O–S at P-T conditions of the upper mantle. Geochemistry International. 2001;39(2):109–122.
21. Gottikh R.P., Pisotskii B.I. Bitumogenez i nekotorye aspekty evolyutsii flyuidov [Bitumogenesis and certain aspects of fluid evolution]. In: Genezis uglevodorodnykh flyuidov i mestorozhdenii. Moscow: GEOS; 2006. pp. 23–37. In Russ.
22. Kadik A.A. Mantle-Derived Reduced Fluids: Relationship to the Chemical Differentiation of Planetary Matter. Geochemistry International. 2003;41(9):844–855.
23. Kadik A.A. Oxygen Fugacity Regime in the Upper Mantle as a Reflection of the Chemical Differentiation of Planetary Materials. Geochemistry International. 2006;44(1):56–71. DOI: 10.1134/S0016702906010071.
24. Kadik A.A., Kurovskaya N.A., Ignat'ev Yu.A., Kononkova N.N., Koltashov V.V., Plotnichenko V.G. Influence of oxygen fugacity on the solubility of carbon and hydrogen in FeO–Na2O–Sio2-Al2O3 melts in equilibrium with liquid iron at 1.5 Gpa аnd 1400°C. Geochemistry International. 2010;48(10):953–960. DOI: 10.1134/S0016702910100010.
25. Beskrovnyi N.S. Naftometallogeniya: edinstvo nefte- i rudoobrazovaniya [Petroleum naphtogeny: unity of oil and ore formation]. Zhurnal Vsesoyuznogo khimicheskogo obshchestva im. D.I. Mendeleeva. 1986;31(5):569–574. In Russ.
26. Khadzhiev S.N., Shpirt M.Ya. Mikroelementy v neftyakh i produktakh ikh pererabotki [Microelements in oils and products of their processing]. Moscow: Nauka; 2012. 222 p. In Russ.
27. Kholodov V.N. Osadochnyi rudogenez i metallogeniya vanadiya [Sedimentary ore genesis and metalgeny of vanadium]. Moscow: Nauka; 1973. 275 p. In Russ.
28. Letnikov F.A., Dorogokupets P.I. K voprosu o roli superglubinnykh sistem zemnogo yadra v endogennykh geologicheskikh protsessakh [The role of superdeep fluid systems of the Earth's core in Endogenic geological processes]. Doklady akademii nauk. 2001;378(4):535–537. In Russ.
29. Eigenson A.S. O protivostoyanii dvukh kontseptsii neftegazoobrazovaniya [Confrontation of two oil and gas generation conceptions].Chemistry and Technology of Fuels and Oils. 1998;(3):3–5. In Russ.
30. Borisova L.S., Kontorovich A.E., Fomichev A.S. Geokhimicheskie osobennosti sostava i struktury geterotsiklicheskikh komponentov bitumoidov organicheskogo veshchestva sovremennykh osadkov [Heterocyclic components of bitumoids in organic matter of modern sediments: geochemical features of composition and structure]. In: Uspekhi organicheskoi geokhimii: materialy Vserossiiskoi nauchnoi konferentsii. Novosibirsk: SO RAN; 2010. pp. 60–63. In Russ.
31. Kholodov V.N. Vanadii [Vanadium]. Moscow: Nauka; 1968. 245 p. In Russ.
32. Okampo R. Izuchenie metallokompleksov i metallov v tyazhelykh syrykh neftyakh [Studies of metal complexes and metals in heavy crude oils]. In: Uspekhi organicheskoi geokhimii: materialy Vserossiiskoi nauchnoi konferentsii. Novosibirsk: SO RAN; 2010. pp. 246–247. In Russ.
33. Goncharov I.V. Geokhimiya neftei Zapadnoi Sibiri [Oil geochemistry in Western Siberia]. Moscow: Nedra; 1987. 180 p. In Russ.

34. Gilinskaya L.G. EPR spectra of V(IV) complexes and the structure of oil porphyrins. Journal of Structural Chemistry. 2008;49(2):245–254. DOI: 10.1007/s10947-008-0120-6.
35. Agaguseinova M.M., Abdullaeva G.N. Kataliticheskoe oksigenirovanie olefinov neftyanymi metalloporfinami [Catalytic oxygenation of olefins by petroleum metalloporphins]. Russian journal of chemistry and chemical technology. 2010;53(9):12–15. In Russ.
36. Yashchenko I.G., Polishchuk Yu.M. Analysis of the spatial distribution of heavy oils and changes of physical and chemical properties. Geologiya nefti i gaza. 2013;(4):57–64. In Russ.

M.A. Lur’e
Doctor of Geological and Mineralogical Sciences,

Research Institute of Petroleum and Coal Chemical Synthesis,
Irkutsk State University, Irkutsk, Russia
miklur@rambler.ru