V.А. Krinin, I.I. Porozov
 
Influence of Late Permian – Early Triassic magmatism on petroleum potential of sedimentary basins within the Siberian Platform: an example of the Anabar-Khatanga saddle
DOI 10.31087/0016-7894-2019-2-25-38

The paper discusses the influence of basic magmatism on hydrocarbon potential of Palaeozoic deposits by the example of the Anabar-Khatanga saddle. A description of characteristics of intrusive bodies represented by the facies of the Byrranga series is presented. A model of basite magmatism development based on the dependencies between the total thickness of dolerite sills and hypsometry of the host sediment complex top, as well as between the total thickness of sills in individual lithostratigraphic units and their thickness has been developed. The authors analysed an influence of the basite magmatism on sedimentary cover structure, estimated an effect of basite magma on reservoir properties and degree of organic matter transformation in the source rocks. Development of hydrocarbon ontogeny in the Anabar-Khatanga saddle is considered in the context of geodynamic processes that occurred in the region during the course of Early and Later Cimmerian orogeny and beyond. The connection of the major events of fluids introduction into sedimentary cover with tectogenesis stages is noted; the direct and indirect negative influence of basite magmatism on ontogenesis of hydrocarbons, morphological features of the structures of the Nordvik swell and the Belogoro-Tigyansky uplift zone and, in general, on the petroleum potential of the Anabar-Khatanga saddle and similar areas are shown. Priority areas of development of oil and gas prospecting in the adjacent territories are proposed.

 

Key words: Siberian Platform; Anabar-Khatanga saddle; basite magmatism; dolerite; sills; petroleum potential; ontogeny; Palaeozoic; tectonics; sedimentary basin.

For citation: Krinin V.А., Porozov I.I. Influence of Late Permian – Early Triassic magmatism on petroleum potential of sedimentary basins within the Siberian Platform: an example of the Anabar-Khatanga saddle. Geologiya nefti i gaza = Oil and gas geology. 2019;(2):25–38. DOI: 10.31087/0016-7894-2019-2-25-38.

References

1. Beskrovnyi N.S., Ermakova V.N., Taliev S.D. Bitumoids of oil-bearing gravelstone and clay in the Uzonsky hydrothermal system. In: Gidrotermal'nye mineraloobrazuyushchie rastvory oblastei aktivnogo vulkanizma. Novosibirsk: Nauka SO RAN, 1974. pp. 135–143.
2. Zubkov M.Yu., Dvorak S.V., Romanov E.A., Chukhlantseva V.Ya. Hydrothermal processes in the Sherkalinsky member (Talinsky field, Western Siberia). Litologiya i poleznye iskopaemye. 1991(3):122–132.
3. Zubkov M.Yu., Shvedenkov G.Yu. Experimental simulation of secondary reservoir formation under the influence of hydrothermal fluids of different composition. Puti realizatsii neftegazovogo potentsiala KhMAO: sb. mat-lov V nauchno-prakticheskoi konferentsii. 2 vol. Vol. 1. Khanty-Mansiisk; 2002. pp. 323–332.
4. Zubkov M.Yu. Reservoirs in the Bazheno-Abalak complex of the Western Siberia and methods of forecasting its spread. Oil and gas geology = Geologiya nefti i gaza. 2014;(5):58–72.
5. Zubkov M.Yu. Secondary reservoirs of tectonic-hydrothermal origin in the roof of the pre-Jurrasic complex in the West-Siberian plate and its forecast methods. Oil and gas geology = Geologiya nefti i gaza. 2015;(6):78–95.

6. Zubkov M.Yu. Tectonic-hydrothermal processes in the West Siberian Jurassic deposits. Oil and gas geology = Geologiya nefti i gaza. 2017;(1):64–82.
7. Karpov G.A. Present-day thermal springs and mercury-antimony-arsenic metallization. Moscow: Nauka; 1988. 183 p.
8. Markhinin E.K. Volcanoes and life. Moscow: Mysl'; 1980. 196 p.
9. Zubkov M.Yu., Bondarenko P.M. Prediction of secondary jointing zones on the basis of seismic data and tectonic and physical modelling. Oil and gas geology = Geologiya nefti i gaza. 1999;(11, 12):31–40.
10. Borisov M.V. Geochemical and thermodynamic models of veined hydrothermal mineralization. Moscow: Nauchnyi mir; 2000. 360 p.
11. Naboko S.I. Formation of present-day thermal springs and metamorphism of solutions and rocks. In: Voprosy vulkanizma. Moscow: Izd-vo AN SSSR, 1962. pp. 52–62.
12. Ovchinnikov L.N. Role of SO2 in hydrothermal mineralization. DAN SSSR. 1976;227(3):680–683.
13. Ovchinnikov L.N., Chelishchev N.F., Sretenskaya N.G. et al. Possible factors of chemical elements separation in hydrothermal conditions. In: S.I. Naboko, ed. Gidrotermal'nye mineraloobrazuyushchie rastvory oblastei aktivnogo vulkanizma. Novosibirsk: Nauka SO RAN; 1974. pp. 71–76.
14. Smirnov V.I. Mineral geology. Moscow: Nedra; 1982. 670 p.
15. Sokolov V.A. Geochemistry of natural gases. Moscow: Nedra; 1971. p. 336.
16. Bgatov V.I. History of oxygen in the Earth’s atmosphere. Moscow: Nedra, 1985. 87 p.
17. Kizil'shtein L.Ya., Minaeva L.G. Nature of framboidal pyrite. DAN SSSR. 1972;206(5):1187–1189.
18. Garrels R.M., Kraist Ch.L. Solutions, minerals, equilibrium. Moscow: Mir; 1968. 318 p.
19. Zubkov M.Yu., Bakuev O.V., Dvorak S.V., Pastukh P.I. Vertical and lateral migration of interstitial fluids in the Jurassic series of the Krasnoleninsky arch. In: Fiziko-litologicheskie osobennosti i kollektorskie svoistva produktivnykh gorizontov Zapadnoi Sibiri: sb. nauch. tr. ZapSibNIGNI. Tyumen, 1988.

V.А. Krinin   Scopus

Krasnoyarsk department of FGBU “VNIGNI”, Krasnoyarsk, Russia;

vkrinin@vnigni.ru

I.I. Porozov

Krasnoyarsk department of FGBU “VNIGNI”, Krasnoyarsk, Russia;

iporozov@vnigni.ru