А.D. Korobov, L.A. Korobova
 
Deep epigenesis of riftogenic-sedimentary series: key to gas and gas condensate fields prediction in the Arctic part of Western Siberia
DOI 10.31087/0016-7894-2020-2-33-45

Occurrence of juxta-epigenesis induced by structural transformation of the region is typical for West Siberian territory. Its features were greatly influenced by the buried continental rifts. Juxtaposed processes differ considerably in southern and northern regions. Ob-Irtyshsky interfluve (south of the West Siberian Plate) is a territory that has not been practically transformed by rifting.
There, in the environment of lower temperatures and abnormally high concentrations of deep CO
2 (an indicator of unexhausted mantle), the interconnected and interdependent processes of kaolinization and carbonation are present on a large scale along the faults transverse to sedimentary cover and basement. The West Siberian Plate is most complicated by rifting in its north (the Tazovsky Bay, Gydan Peninsula, etc.). In the environment of higher temperature and CO2 deficiency (due to mantle depletion), zeolite facies (the indicator mineral is laumontite) is widely developed along the deep faults cross-cutting the basement rocks (transitional sequence) and sedimentary cover, and sporadically — the Transylvanian facies (typical mineral is calcite). Both facies are part of low-temperature propylites. Juxta-epigenesis controlled by deep-seated faults and fault fissures resulted in formation of unusual vertical non-facies column-shaped zones; they are laumontite in the north, kaolinite and carbonate (mainly calcite) in the south. Regionally occurring zeolite propylites are usually productive. They must therefore be considered to be the prospective reservoirs for gas condensate and/or natural gas.

Key words: zeolite propylites; deep epigenesis; sedimentary basins; hydrocarbon raw materials

 

For citation: Korobov A.D., Korobova L.A. Deep epigenesis of riftogenic-sedimentary series: key to gas and gas condensate fields prediction in the Arctic part of Western Siberia. Geologiya nefti i gaza. 2020;(2):33–45. DOI: 10.31087/0016-7894-2020-2-33-45. In Russ.

 

References

1. Timofeev P.P., Kossovskaya A.G., Shutov V.D., Bogolyubova L.I., Drits V.A. Novoe v uchenii o stadiyakh osadochnogo porodoobrazovaniya [New in the theory of sedimentary rock formation stages]. Litologiya i poleznye iskopaemye. 1974;(3):58–82. In Russ.
2. Korobov A.D., Korobova L.A. Convective heat and mass transfer and the formation of oil and gas reservoirs in the rocks from the transitional complex and mantle. Otechestvennaya geologiya. 2012;(6):3–12. In Russ.
3. Korobov A.D., Korobova L.A., Kolotukhin A.T., Mukhin V.M., Loginova M.P. Glubinnyi epigenez riftogenno-osadochnogo kompleksa Arkticheskoi chasti Zapadnoi Sibiri — klyuch k prognozu gazovykh i gazokondensatnykh mestorozhdenii [Deep epigenesis of rifting-sedimentary series: key to gas and gas condensate fields prediction in the Arctic part of Western Siberia]. In: Litologiya osadochnykh kompleksov Evrazii i shel'fovykh oblastei: Materialy IX Vserossiiskogo litologicheskogo soveshchaniya (s mezhdunarodnym uchastiem). Kazan': Izd-vo Kazanskogo universiteta; 2019. pp. 203–204. In Russ.
4. Aplonov S.V. Geodinamika rannemezozoiskogo Obskogo paleookeana [Geodynamics of the Early Mesozoic Ob Paleo-ocean]. Moscow: IOAN; 1987. 98 p. In Russ.
5. Sorokhtin O.G. Proiskhozhdenie zemnoi kory [Origin of the Earth's crust]. Geofizika okeana. V. 2. Geodinamika. Moscow: Nauka; 1979. pp. 223–257. In Russ.
6. Aplonov S.V., Shmelev G.B., Krasnov D.K. Geodinamika Barentsovo-Karskogo shel'fa (po geofizicheskim dannym) [Geodynamics of the Barents-Kara Shelf (according to geophysical data)]. Geotektonika = Geotectonics. 1996;(4):58–76. In Russ.
7. Shenger A.M.S., Natal'in B.A. Rifty mira [Rifts of the world]. Moscow: Geokart-GEOS; 2009. 188 p. In Russ.
8. Lutts B.G. Degazatsiya Zemli i magmaticheskie protsessy, formiruyushchie kontinental'nuyu i okeanicheskuyu koru [Earth degassing and igneous processes forming continental and oceanic crust]. In: Degazatsiya Zemli i geotektonika: Tezisy dokladov 3-go Vserossiiskogo soveshchaniya. Moscow: Nauka; 1991. pp. 10–11. In Russ.
9. Troshin Yu.P. Geokhimiya letuchikh komponentov v magmaticheskikh porodakh i magmakh razlichnykh geodinamicheskikh obstanovok fanerozoiskikh podvizhnykh poyasov Zemli [Geochemistry of volatile constituents in igneous rocks and magma of different geodynamic settings in the Earth’s Phanerozoic mobile belts]. In: Geokhimiya magmaticheskikh porod okeana i zon sochleneniya okean – kontinent. Novosibirsk: Nauka; 1984. pp. 34–41. In Russ.
10. Borodina E.A. Tseolitizatsiya kollektorov: analiz vliyaniya, prognozy i rezul'taty na primere mestorozhdenii severa Zapadnoi Sibiri [Reservoir zeolitization: analysis of influence, forecasts, and results by the example of the northern West Siberian fields]. In: Evolyutsiya osadochnykh protsessov v istorii Zemli: Materialy 8-go Vserossiiskogo litologicheskogo soveshchaniya. V. 1. Moscow: Izd-vo RGU nefti i gaza; 2015. pp. 216–221. In Russ.
11. Naidenov L.F., Agalakov S.E., Bakuev O.V. New data on geology and oil-and-gas content prospects of Neocomian deposits of Bolshekhetskaya depression and Messoyakhskiy belt of megaswells. Neftyanoe khozyaistvo=Oil industry. 2010;(12):83–85. In Russ.

12. Podnebesnykh A.V. Osobennosti formirovaniya tseolitov v nizhnemelovykh otlozheniyakh yuga Gydanskogo poluostrova [Features of zeolite formation in the Lower Cretaceous deposits of the southern Gyda Peninsula]. In: Osadochnye basseiny, sedimentatsionnye i postsedimentatsionnye protsessy v geologicheskoi istorii: Materialy 7-go Vserossiiskogo litologicheskogo soveshchaniya. V. 2. Novosibirsk: Izd-vo INGG SO RAN; 2013. pp. 382–386. In Russ.
13. Korovina T.A., Kropotova E.P. Vtorichnye protsessy v terrigennykh kollektorakh Zapadno-Sibirskogo neftegazonosnogo kompleksa [Secondary processes in terrigenous reservoirs of the West Siberian play]. In: Mineral'nye indikatory litogeneza: Materialy Rossiiskogo soveshchaniya s mezhdunarodnym uchastiem. Syktyvkar: Geoprint; 2011. p. 271–273. In Russ.
14. Podnebesnykh A.V., Ovchinnikov V.P. The Problems of zeolites detection and their influence on development of the productive reservoirs in the Messoyakha group of fields. Izvestiya Tomskogo politekhnicheskogo universiteta = Bulletin of the Tomsk Polytechnic University. 2014;324(1):137–145. In Russ.
15. Lebedev B.A., Aristova G.B., Bro E.G., Kuz'mina G.S., Lebedeva G.V., Sakhibgareev R.S., Skubelina L.S. Vliyanie epigeneticheskikh protsessov na parametry kollektorov i pokryshek v mezozoiskikh otlozheniyakh Zapadno-Sibirskoi nizmennosti [Influence of epigenetic processes on reservoir and seal properties in Mesozoic deposits of the West Siberian Lowland]. In: Trudy VNIGRI. Issue 361. Leningrad: Nedra; 1976. 132 p. In Russ.
16. Koporulin V.I. Formation of laumontite in sedimentary rocks: A case study of sedimentary sequences in Russia. Lithology and Mineral Resources. 2013;48(2):128–144.
17. Senderov E.E. Vliyanie CO
2 na ustoichivost' lomontita [Effect of СО2 on laumontite stability]. Geokhimiya. 1973;(2):190–200. In Russ.
18. Kravchenko K.N., Ivanova O.V., Burlin Yu.K., Sokolov B.A. Naftidnoe raionirovanie arkticheskikh akvatorii Rossii i Alyaski v svyazi s razmeshcheniem i poiskami unikal'nykh mestorozhdenii nefti i gaza [Naphtide-based zoning of the Russian Arctic waters and Alaska in the context of distribution and exploration of super giant oil and gas fields]. Geologiya, geofizika i razrabotka neftyanykh mestorozhdenii. 2000;(11):2–10. In Russ.

A.D. Korobov  Scopus   iD 

Doctor of Geological and Mineralogical Sciences, Professor,

Saratov National Research State University named after N.G. Chernyshevsky, Saratov, Russia;
korobad@yandex.ru

L.A. Korobova  Scopus   iD 

Candidate of Geological and Mineralogical Sciences, Associate Professor,

Saratov National Research State University named after N.G. Chernyshevsky, Saratov, Russia;
korob@info.sgu.ru

Licensed under a Creative Commons Attribution 4.0 License