А.А. Ivlev
 
Formations of sequences rich in organic matter in the light of new model of global carbon cycle
DOI 10.31087/0016-7894-2019-5-83-90

The dynamics of photosynthesis is determined by the uneven movement of lithosphere plates. The cyclical nature of the lithosphere plates’ motion determines the cyclicity of the associated factors, namely: carbon cycle, photosynthesis evolution, organic matter accumulation in sedimentary strata, climate changes, and other processes. The formation of rocks rich in organic matter also occurred cyclically; it is associated with the massive mortality of organisms that took place when cycles were changing due to catastrophic alterations in the environment. The key role of photosynthesis in the formation of oil-producing strata allows defining the oil generation interval from Riphean to Paleogene. The lower limit is determined by the time (from the moment of photosynthesis onset) of organic matter accumulation in amount sufficient to provide the dispersed hydrocarbons and allowing to form hydrocarbon accumulations. The oxygen content in the atmosphere at that moment was several percent. From above, oil generation is limited by reaching the environmental compensation point, i. e. such a state of the global carbon cycle, where the amount of carbon produced in photosynthesis becomes equal to the amount of carbon returned to the oxidized inorganic form. The upper limit was reached after Miocene, when the decrease in CO2 concentration has led to the emergence of a new C-4 type of photosynthetic assimilation.

Key words: photosynthesis; thermo-chemical sulphate reduction; carbon cycle; environmental compensation point; orogenic cycle; periods of orogeny and divergence; catastrophic alternation of living conditions; massive mortality of organisms; sequences rich in organic matter.

For citation: Ivlev A.A. Formations of sequences rich in organic matter in the light of new model of global carbon cycle. Geologiya nefti i gaza. 2019;(5):83–90. DOI: 10.31087/0016-7894-2019-5-83-90.

References

1. Ivlev A.A. Global redox cycle of biospheric carbon: interaction of photosynthesis and earth crust procsess. BioSystems. 2015;(137):1–11. DOI: 10.1016/j.biosystems.2015.10.001.
2. Hayes J.M., Strauss H., Kaufman A.J. The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chemical Geology. 1999;(161):103–125. DOI: 10.1016/s0009-2541(99)00083-2.
3. Raup D.M., Sepkosky J.J.Jr. Periodicity of extinctions in the geological past. Proceedings of the National Academy of Sciences. 1984;(81):801–805. DOI: 10.1073/pnas.81.3.801
4. Hallam A., Wignall P.B. Mass Extinctions and their Aftermath. Oxford: Oxford University Press; 1997. 328 p.
5. Bazhenova O.K., Sokolov B.A. Origin of oil: fundamental problem of natural history [Proiskhozhdenie nefti — fundamental'naya problema estestvoznaniya]. Geologiya nefti i gaza. 2002;(1):2–7.
6. Vyshemirskii V.S., Kontorovich A.E. Cyclical pattern of oil accumulation in the Earth history [Tsiklicheskii kharakter neftenakopleniya v istorii Zemli]. Geologiya i geofizika = Russian geology and geophysics. 1997;38(5):907–918.
7. Korchagin V.I. General stratigraphic chart and distribution of oil and gas pools within Phanerozoic and Pre-Cambrian stratigraphic frameworks. Table based on the current Stratigraphic Code. [Obshchaya stratigraficheskaya shkala i raspredelenie zalezhei nefti i gaza po stratigraficheskim podrazdeleniyam fanerozoya i dokembriya. Tablitsa, sostavlennaya na osnovanii deistvuyushchego Stratigraficheskogo kompleksa]. Moscow: VNIGNI; 2001.
8. Ivlev A.A. Manifestations of Photosynthesis in the Evolution of the Global Carbon Cycle. Oceanography & Fisheries Open Access Journal (OFOAJ). 2019;9(1). Available at: http://www.ogbus.ru (accessed 26.04.2019). DOI: 10.19080/OFOAJ.2019.08.555755.
9. Rutten M.G. The origin of life by natural causes. Amsterdam, London, New York: Elsevier Publ Co.; 1971. 471 р. DOI: 10.1002/jobm.19730130415
10. Farquhar G.D., Zerkle A.L., Bekker A. Geological constraints on the origin of oxygenic photosynthesis. Photosynthesis Res. 2011;(107):11–36. DOI: 10.1007/s11120-010-9594-0.
11. Holland H.D. The history of ocean water and its effect on the chemistry of atmosphere. Proceedings of the National Academy of Sciences. 1965;53(6):1173–1182. DOI: 10.1073/pnas.53.6.1173.
12. Bjerrum C.J., Canifield D.E. New insights into the burial history of organic carbon on the early Earth. Geochemistry Geophysics Geosystems. 2004;5(8). DOI: 10.1029/2004GC000713.
13. Canfield D.E., Teske A. Late Proterozoic rise in atmospheric oxygen inferred from phylogenetic and sulphur-isotope studies. Nature. 1996;(382):127–132. DOI: 10.1038/382127a0.
14. Berner R.A. The long-term carbon cycle, fossil fuels and atmospheric composition. Nature. 2003;(426);323–326. DOI: 10.1038/nature02131.
15. Berner R.A., Canfield D.E. A new model for atmospheric oxygen over Phanerozoic time. American Journal of Science. 1989;289(4):333–361. DOI: 10.2475/ajs.289.4.333.
16. Berner R.A., Petsch S.T., Lake J.A., Beerling D.J., Popp B.N., Lane R.S., Laws E.A., Westley M.B., Cassar N., Woodward F.I., Quick W.P. Isotope fractionation and atmospheric oxygen: implications for Phanerozoic O2 evolution. Science. 2000;(287):1630–1633. DOI: 10.1126/science.287.5458.1630.
17. Lenton T.M. The role of land plants, phosphorous weathering and fire in the rise and regulation of atmospheric oxygen. Global Change Biology. 2001;(7):613–629. DOI:10.1046/j.1354-1013.2001.00429.x.
18. Bergman M.J., Lenton T.M., Watson A.G. COPSE: a new model of biogeochemical cycling over Phanerozoic time. American Journal of Science. 2004;304(5):397–437. DOI: 10.2475/ajs.304.5.397.

19. Berner R.A., Kothavala Z. GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science. 2001;301(2):184–204. DOI: 10.2475/ajs.301.2.182.
20. Ivlev A.A., Chetverikova O.P. Separate accounting of gaseous and liquid products of expulsion in catagenesis of particulate organic matter: modified balancing method of calculations [Modifitsirovannyi balansovyi metod rascheta s tsel'yu razdel'nogo ucheta gazoobraznykh i zhidkikh produktov emigratsii pri katageneze rasseyannogo organicheskogo veshchestva]. Geologiya nefti i gaza. 1983;(3):28–34.
21. Hunt J.M. Petroleum Geochemistry and Geology. San Francisco: W.H. Freeman; 1979. 617 p.

22. Karaseva T.V., Shcherbinina N.E., Bykov V.N., Belokon A.V., Bashkova S.E. On further development of exploration for oil and gas in proterozoic European Russia [O dal'neishem razvitii geologorazvedochnykh rabot na neft' i gaz v proterozoiskikh otlozheniyakh evropeiskoi chasti Rossii]. Neftegazovoe delo = Oil and Gas Business. 2014;(3):1–16. Available at: http://ogbus.ru/files/ogbus/issues/3_2014/ogbus_3_2014_p1‑16_KarasevaTV_ru.pdf (accessed 26.04.2019). DOI: http: //dx.doi.org/10.17122/ogbus‑2014‑3‑1‑16.
23. Cerling T.E., Wang Y., Quade J. Expansion of C4 — ecosystems as an indicator global ecological change in late Miocene. Nature. 1992;(361):344–348. DOI: 10.1038/361344a0.
24. Yudovich Ya.E., Ketris M.P. Geochemistry of black shale [Geokhimiya chernykh slantsev]. Moscow, Berlin: Direkt‑Media; 2015. 272 p.
25. Chen R., Sharma Sh. Linking the Acadian Orogeny with organic‑rich black shale deposition: Evidence from the Marcellus Shale. Marine and Petroleum Geology. 2001;(79):149–58. DOI: 10.1016/j.marpetgeo.2016.11.005
26. Luciani V., Cobianchi M., Jenkyns H.C. Biotic and geochemical response to anoxic events: the Aptian pelagic succession of the Gargano Promontory (southern Italy). Geological Magazine. 2016;138(3):277–298. DOI: 10.1017/S0016756801005301.
27. Braduchan Yu.V., Gurari F.G., Zakharov V.A. et al. Bazhenov Horizon in Western Siberia (stratigraphy, paleogeography, ecosystem, oil bearing capacity) [Bazhenovskii gorizont Zapadnoi Sibiri (stratigrafiya, paleogeografiya, ekosistema, neftenosnost')]. Novosibirsk: Nauka; 1986. 217 p.
28. Large R.R., Halpin J.A., Lounejeva E., Danyushevsky L.V., Maslennikov V.V., Gregory D., Sack P.J., Haines P.W., Long J.A., Makoundi C., Stepanov A.S. Cycles of nutrient trace elements in the Phanerozoic ocean. Gondwana Research. 2015;28(4):1282–1293. DOI: 10.1016/J.GR.2015.06.004.
2
9. Muraoka H., Tang Y., Terashima I., Koizumi H., Washitani I. Contributions of diffusional limitation, photoinhibition and photorespiration to midday depression of photosynthesis in Arisaema heterophyllum in natural high light. Plant Cell Environment. 2000;23(3):235–250. DOI:10.1046/j.1365‑3040.2000.00547.x.
30. Goričan Š., Carter E.S., O'Dogherty G.L., Guex J., O’Dogherty L., De Wever P., Dumitrica P., Hori R.S., Matsuoka A., Whalen P.A. Evolutionary patterns and palaeobiogeography of Pliensbachian and Toarcian (Early Jurassic) Radiolaria. Palaeogeography, Palaeoclimatology, Palaeoecology. 2013;386(15):620–636. DOI: 10.1016/j.palaeo.2013.06.028.

А.А. Ivlev  Scopus    iD 

Russian State Agrarian University — Moscow Timiryazev Agricultural Academy, Moscow, Russia;

aa.ivlev@list.ru